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A plasma in contact with an external source of power, especially a source that interacts
specifically with high-velocity electrons, exhibits transport properties, such as conductivity,
different from those of an isolated plasma near thermal equilibrium. This is true even when the
bulk of the particles in the driven plasma is near thermal equilibrium. To describe the driven
plasma, we derive an adjoint equation to the inhomogeneous, linearized, dynamic Boltzmann
equation. The Green’s functions for a variety of plasma responses can then be generated. It is
possible to modify the Chapman-Enskog [ Mathematical Theory of Nonuniform Gases, 3rd ed.,
(Cambridge U.P., Cambridge, MA, 1970) ] expansion in order to incorporate the response

functions derived here.

I. INTRODUCTION

The expansion developed by Chapman and Enskog'
provides a generally useful description of transport in a plas-
ma. This expansion, which applies when the mean free path
of particles is small compared to other lengths of interest, has
been the starting point for describing plasmas near thermal
equilibrium. At the heart of this method is a reduced descrip-
tion of each plasma species in terms of macroscopic fluid
variables, namely, the density, temperature, and drift. It is
these properties of the plasma that are transported in config-
uration space in order to describe the evolving plasma.

The transport numbers, such as the conductivity or the
coefficients governing particle and heat diffusion, are calcu-
lated by considering small perturbations from thermal equi-
librium. It is well known, however, that certain phenomena
are not described well by this method, namely, those pro-
cesses involving the highly energetic particles, particularly
electrons, that collide infrequently. For example, the plasma
conductivity, the so-called Spitzer-Hirm conductivity,” is
strictly derived only in the limit of the dc electric field E
vanishing. For E finite, important corrections occur because
of the high-velocity electrons, which tend to run away. If
many of these electrons run away, the Spitzer—Hérm con-
ductivity may no longer provide a useful description. The
regime in which only a few electrons run away, where con-
ductivity is a good description, is the small-mean-free-path
limit, which arises for E small enough.

In the case of driven plasmas, however, the Spitzer—
Hirm conductivity may not be a useful approximation even
for E—0. These plasmas are not near thermal equilibrium;
they are actively heated by an external source of radiation or
particles. One example of a driven plasma that is not de-
scribed well by the Chapman—Enskog (C-E) expansion, and
hence not by Spitzer-Hirm conductivity, is a plasma in con-
tact with external radiation that interacts specifically with
the fast, collisionless electrons. This is a situation that com-
monly arises in rf-heated plasmas, particularly when the
purpose is to generate toroidal current. The deviation from
Spitzer-Hiirm conductivity is because of the larger number
of fast electrons. These electrons have long mean free paths,
and even though small in number compared to the bulk elec-
trons, they may play a large part in carrying current.’
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In this report, we develop a description suitable for driv-
en plasma. We consider those plasmas for which it is valid to
apply the fundamental Chapman—-Enskog approximation,
that collisions are large enough to create a nearly Maxwel-
lian distribution of particle velocities. We use this approxi-
mation to linearize the Boltzmann collision operator, and as
a result obtain the dynamic linearized, inhomogeneous
Boltzmann equation. Plasma responses to arbitrary wave ex-
citation affecting the fast electrons are then determined by
solving an adjoint equation. The result is an improved char-
acterization of the relatively collisionless phenomena asso-
ciated with the external excitation of the plasma. A modifi-
cation of the C-E expansion then allows a dual
characterization of driven plasmas; a slowly evolving fluid
description of the bulk properties and a dynamic response,
linear in the excitation, for the driven, relatively collisionless
processes.

In order to put the present work in perspective, we must
place it both in the context of the problem of current drive
and in the context of techniques used to describe transport in
plasmas. First, let us briefly review some of the approaches
taken to this problem. Response functions for the current
generated per power dissipated, J /P,, were central to our
early understanding of both beam-driven currents,* and
wave-driven currents with low® and high® phase velocity
waves. The early work, however, was characterized by a
crude one-dimensional model of velocity space, and was un-
able to predict, for example, current drive by electron-cyclo-
tron (ECRH) waves. Fisch and Boozer’ used slowing-down
equations to formulate the problem in two dimensions in
velocity space. This gave the first precise response function
for the current-drive efficiency and predicted the ECRH
current-drive effect.

An improved derivation of the 2-D Fisch-Boozer re-
sponse function was provided by Antonsen and Chu.® Draw-
ing upon neoclassical techniques, these authors extended the
Fisch-Boozer efficiency calculation to toroidal geometry by
writing an adjoint equation to the steady-state linearized
Boltzmann equation. Hirshman® and Taguchi'®!! employed
a similar technique to solve similar equations. Using the ad-
joint equation, Antonsen and Yoshioka'? have calculated rf-
induced particle transport across field lines. The Antonsen
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and Chu approach was also generalized to include a small dc
electric field in order to evaluate the conductivity of a driven
plasma.?

In order to interpret the recent high efficiency PLT
ramp-up experiments,'? response functions had to be identi-
fied and evaluated in the presence of a strong dc electric field.
The most straightforward approach, adopted by Fisch and
Karney,' generalized the Fisch-Boozer slowing-down
equations to include the strong field. In addition to the cur-
rent-drive efficiency, this work also identified the Green’s
function for runaway production. A comparison by Karney
et al.”> of this theory and the experiment showed very good
agreement.

A better approach to the strong-field case is to build
upon the Antonsen—Chu work.® The present work seeks to
do this. Here, an adjoint equation is written for the dynamic,
linearized Boltzmann equation, allowing for the presence of
a strong dc electric field. Also, in addition to a response
function for the current, other response functions are identi-
fied and evaluated. It is interesting to note that were this
adjoint equation solved in the high-velocity limit by the
method of characteristics, the characteristic equations
would be the Fisch-Boozer slowing-down equations.

The second context in which to place the present work is
techniques in transport theory,'*'® which exploit, too, the
self-adjoint property of the collision integral. However,
these previous works treat transport associated with the bulk
of the plasma, rather than with a select few tail, high-energy,
rarely colliding electrons. Therefore, it is possible to neglect
both the inertial term (d/d¢) and the acceleration term
(E 3/dv)), and the effect of the electric field is taken into
account only as a driving term (E d f,,/dv|) to the simpli-
fied Boltzmann equation. Hence, Spitzer conductivity is ob-
tained by this formalism, but the dynamics of runaway elec-
trons cannot be described. To treat these electrons, both the
inertial term and the acceleration term must be retained.

Retaining these terms results in a considerably more
complicated adjoint equation, and different simplifications
are sought. Particular phenomena associated with rf-driven
plasmas, including the rf-induced runaways, the rf-induced
current, and the rf-induced radiation, can then be identified
and described.

The paper is organized as follows. In Sec. II we discuss
the validity and the utility of the linearization of the Boltz-
mann equation. In Sec. III we derive the adjoint equation
and we write the general Green’s function response. This is
our principal result. In Sec. IV we give several examples of
the utility of this general equation. A modified C-E expan-
sion, that includes the derived response functions in addition
to the normal fluid terms, is given in Sec. V. A summary of
our findings is given in Sec. VL.

Il. LINEARIZED BOLTZMANN EQUATION

The Boltzmann equation provides an excellent descrip-
tion of the evolving plasma, but it is too complicated to apply
directly to most problems of interest. Certain approxima-
tions, however, allow us to extract information from this
equation reliably and efficiently. The most helpful simplifi-
cations that are unique to the wave-driven plasma rely on the
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localization in velocity space of the wave-driven fluxes and
the fact that these fluxes often involve only very fast elec-
trons.

To be specific, let us consider the electron distribution
function f(r.v,t) driven by some wave-induced flux I'(r,v,z ),
evolving as described by the inhomogeneous Boltzmann
equation

a_ _9.
5= CUHN+CUAS) — 2T, (1)

where C(f,f) represents the self-collisions of electrons,
C (£, f;) represents the scattering of electrons offion distribu-
tion f;, and the total time derivative, d /df, is defined by

d__d a a

—=—+v —+F:—, 2

dt ot + ar + av @
where F is the acceleration resulting from the background dc

electric field E and magnetic field B, i.e.,
F=(e/m)E 4+ vXB). {3)

To be sure, we generally expect that the magnetic field will
be so large that the conventional expansions leading, for ex-
ample, to the drift kinetic equation are appropriate. To solve
Eq. (1), we will make use of any of these expansions, which
are useful whether or not the electrons are subject to wave-
induced fluxes. However, here, we shall focus only on ap-
proximations that are specific to the problem at hand.

The main effect of the injection of intense rf-waves at
high-phase velocities parallel to the magnetic field B is to
distort the electron distribution in the resonant region of
velocity space. Waves at frequency o are injected with a
range of parallel wavenumbers k; such that v, <w/k; <v,.
The region of the electron velocity space resonant with the
waves is U, < <v,, wherey), is the electron velocity parallel
to B. In the resonant region the waves act to diffuse elec-
trons, the so-called “quasilinear diffusion,” and if the inject-
ed power is intense enough, then a plateau of electrons
forms. The plateau represents a distribution function
S(y,v,) of electrons such that df /dv; ~O0 in the resonant

region, with contours of f assuming levels in the parallel
direction that are parametrized by v, , the electron velocity
perpendicular to the magnetic field.

For many problems of interest and, in particular, in the
instance of the efficient generation of current, the wave-in-
duced fluxes create a plateau of energetic (superthermal)
electrons, while the bulk of the electron velocity distribution
remains Maxwellian. This observation leads us to two help-
ful approximations. Firstly, most plateau electrons collide
with bulk electrons rather than with each other, since there
are so many more bulk electrons. Hence, the collision inte-
gral may be linearized by letting f= f,, + f and approxi-
mating

CULN =C(fm N+ C (L 1), 4)

where we used C( f,,, f,.) = 0, since a Maxwellian distribu-
tion has no further to relax by collisions.

The second helpful approximation arises from the infer-
ence that I' is usually quite localized in velocity space, even
though T itself may depend on f. More precisely, while T’
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may, in general, depend on v and v, in both direction and
magnitude, much information may be gleaned from the reso-
nance condition @ — kv, — nQ, = 0, where n is an integer
and 1, is the electron-cyclotron velocity. For » =0, the
Landau resonance, I must be in the parallel direction. This
is a consequence of energy and momentum conservation
between the wave and the particle. Similarly, for n#£0, we
can infer the direction of I', which for most applications,
such as heating or current drive with electron-cyclotron
waves, will be nearly in the perpendicular direction. If the
spectrum of waves is narrow in k; space, then only electrons
within a narrow band in v space will be resonant, such as
those electrons with v, ~ v,,,. If this region is narrow and
Vees »Ur., Where vy, is the electron thermal velocity, then
even if the electron distribution is distorted by the waves, the
wave-induced flux I is of known direction and finite only for
V)| = Useg» Uy = Ve, OF in other words, v =~ v, i;. Only the
magnitude of I', which for Landau damping depends on
df /dv) in the resonant region, remains unknown.

Knowledge of all but the magnitude of T, together with
the license to linearize Eq. (1), allows us to solve easily an
important class of problems. Suppose that a certain power
P, is absorbed from the waves by the resonant electrons. As
a result, there may appear in the plasma a wave-induced
current J. The quantity J/P,, which is a measure of the
efficiency of the current drive, is independent of the magni-
tude of T, since both J and P, are proportional to it. The
ratio, however, does depend on both the direction and veloc-
ity locale of T, which could be inferred approximately, as
outlined above, without knowledge of the magnitude of T".
Other responses, such as the incremental bremmstrahlung
radiation per power adsorbed, can be computed in the same
manner. The quantity J/P,, and other quantities that are
similarly inferred, describe the response of the plasma to the
absorption of wave energy by resonant electrons, and pro-
vide insight as to how to inject these waves in order to maxi-
mize a desired response.

The magnitude of T is also an important quantity, since
all plasma responses will be proportional to it. This quantity,
however, may sometimes be found by more crude means,
e.g., by linear theory,?° by a one-dimensional quasilinear cal-
culation,® or by experimental observation of any one of the
responses dependent on it.

Il. ADJOINT EQUATION

The linearization of the Boltzmann equation enables us
to find responses to arbitrary wave-induced fluxes. Instead
of solving the Boltzmann equation, we solve an adjoint equa-
tion for the Green’s function. In this section, we derive the
adjoint equation. For simplicity, we will restrict our atten-
tion to the homogeneous case, d /dr = 0. However, we will
solve the problem in a finite velocity domain, which facili-
tates a numerical implementation.

There is a certain amount of arbitrariness in imposing a
specific linearization. We will adopt a linearization that will
enable us to generalize easily the C~E expansion. We utilize
the fact that the heating of the bulk of f occurs on a time
scale long compared to the time scales for other processes of
interest, while collisions, predominant in the bulk of f, as-
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sure for thermal velocities a nearly Maxwellian distribution.
Thus, we linearize

[=fa(1+¢), (5)
with
fon=n(2mT/m)"*? exp( — €/T), (6)

where density # and temperature 7 may be slow functions of
time (and would be of space, too, in a more general consider-
ation of the problem), and we defined the kinetic energy
€ = mv*/2. For simplicity of presentation, we have made
one further simplification in the C-E approach by lineariz-
ing about a stationary rather than the more general drifting
Maxwellian distribution. To find a unique solution with this
procedure necessitates two compatibility conditions; we
choose n and T'such that f,, (integrated over velocity space)
contains the same number of electrons and the same amount
of energy as does f. Accordingly, ¢(v,r,? ) is orthogonal both
to f,, and to €f,,, namely

jyfm¢d3v=J;efm¢d3v=0, W

where V is the velocity space domain under consideration,
which necessarily is finite in a numerical implementation of
the method.

Substituting Eq. (5) into Eq. (1), and specializing to the
homogeneous case, d /dr = 0, we obtain

Ls s—%fm + F-%fmas —c@)

J a J

= ——I'——f, —F.—f , 8
v P S Pl (8)
where ¢ obeys a homogeneous initial condition and we use

¥ _n O T O,

Jt at on Jr ar

/] € 3) T

=rp +(£-2) Ly, 9
ot (S5-2) L )

although f,, is assumed to evolve on a time scale larger than
the scale ¢ on which ¢ evolves. In Eq. (9) we also adopted the
convenient notation

C(¢) = C(fm’fm ¢) + C(fm ¢vfm)

+ CUm ) - (10)

In order to assure that Eq. (7) continues to be obeyed as ¢
evolves in time, two solubility, or compatibility, conditions
are applied to Eq. (8). To assure the orthogonality of ¢ to
fms we integrate Eq. (8) over ¥ to obtain

gt-fyfmgba”v: - Lf,,, ¢F-da+LC(¢)d3u

_Lr.da_.LfmF-da—ﬁ, (11)

where 2 is the surface in velocity space bounding ¥, and # is
chosen so that the right-hand side of Eq. (11) vanishes. In
practice, we wish to choose ¥ large enough such that the
boundary terms do not introduce severe particle losses, and
such that particles that do leave through the boundary can
be accounted for in some other simple way (such as free-
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streaming). The physical implication of decreasing n as a
result of runaway production is that the bulk population is
somewhat depleted of electrons and, hence, serves somewhat
less effectively as a scatterer. Very fast electrons, i.e., those
outside the domain V, are ineffective in contributing to the
collisions of other electrons. It is often sufficient to account
for these electrons merely by allowing them to stream freely
from their point of exit on 2. One fine point here is that we
assume that the Maxwellian background is not confined to
the bounded domain. This is consistent with the other ap-
proximations made so far, and it is a convenience.

The second compatibility condition gives us 7, the tem-
perature evolution of the background electrons. Multiplying
Eq. (8) by ¢, integrating over the domain ¥, and applying Eq.
{7), we obtain

e

3 ,
+F-3;fm¢—0(¢))d v, (12)

where the first right-hand-side term above represents the
energy input of the wave-driven flux, the second term van-
ishes, the third term contains the joule heating effect of the
rf-driven current, and the last term tends to zero as V— .

Equation (8), together with Eq. (9) and the expression for
i and T, comprises an inhomogeneous, linear, integrodiffer-
ential equation for ¢. This equation, difficult to treat analyti-
cally, may be solved numerically. The evolving solution #{¢)
automatically obeys the orthogonality conditions, so that
the linearization, Eq. (5), continues to hold, allowing the col-
lision integral to retain its form. Rather than solve Eq. (8) for
each excitation I', however, we consider an adjoint equation
instead.

To find an operator adjoint to L, we first define a com-
mutative operation on the two functions ¢ (v,2‘) and ¥(v,¢ ')
by

(4, ¥], = Ld% J; d(v,t — T)lv,7) d7, (13)

where the operation [ ] is parametrized by ¢. Define a lin-
ear operator D, operating on ¥(v,t’) by

Dg(vt) = (fm 2y £ Pt =1 -%111— cwo)-

(14)
For functions ¢ and ¢ with homogeneous initial and bound-
ary conditions, it may be shown that the operator D, is ad-
joint to the operator L with respect to the inner product
[ I.ie,

[4.D.¥], = [#.LS], . (15)

Supposethat ¢(v,z ') and ¥/(v,t ') are restricted to functions
orthogonal both to f,, and to €f,, over the domain V. Sup-
pose further that ¥(v,z ') obeys the evolution equation

D,¢(V,t')=q1fm +q2€fm ’ (16)
where the constants ¢, and g, are chosen to ensure that the
orthogonality conditions on ¢ are obeyed subsequently, giv-

en that they are obeyed initially. The quantities ¢, and g, are
independent of v, but are linear functionals of . We now
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supplement Eq. (16) with inhomogeneous initial and bound-
ary conditions on ¥, namely

vt =0) = tolv), (17a)
Sy(v,t')=Sz(v,t) on X, (17b)
where 2 is the boundary in velocity space to domain ¥, and

S, is the flux in velocity space associated with the operator
D,ie.,

Sy(¥) = — f,n F(v,t — 7lg(v,7) + S.(¢), (18)
where S, () is related to C (¥) by
- _9,
ClY)= pe S.(4). (19)

For the collision operator C, we have the property
[ 1ocw —vewona
| 4

- —L [45.(4) — 8S.($)] - da. (20)

For ¥V— w0, the surface terms vanish and we have the well-
known self-adjoint property of the collision operator. For
our present needs, however, we shall keep the boundary
terms.

We take the inner product of ¢ and D, ), where ¢ obeys
Eq. (8) with homogeneous initial condition and ¥ obeys Egs.
(16) and (17). We need to specify a boundary condition on Eq.
(8), too; for our present purposes let us assume we know S, (4)
on the boundary [but, we shall, in Eq. (23), give a more use-
ful, less general, condition]. Exploiting the orthogonality
properties of both ¢ and 9, we obtain

J;d 30 £ d(V,2 oolv) + J: dr L &V, 7)Sz(v,t — 7))+ da

= J; d* J; drT (vt —7)° g—v Y(v,7)

+fd1'f vt —7)[T, +S.(4)]~da. (21)
The driven flux
L, wt)=Tt)+Fozr)f, (22)

is the sum of the wave-induced flux I'" and the flux induced by
the background fields that tend to accelerate the background
Maxwellian distribution. The latter flux leads to the Ohmic
current.

Equation (21) is a principal result of this work. Both ¢,
and Sy are arbitrary functions, and they may be used to
express any moment of ¢ either in the interior of ¥ or on its
bounding surface =. Depending on the desired moment of ¢,
a different Green’s function, ¥, is solved for by Eqs. (16) and
(17). Once ¢ is known, the right-hand side of Eq. (21) may be
evaluated for arbitrary wave-induced fluxes I.

Note that in generalizing the steady-state adjoint equa-
tions to include time dependence, several significant steps
were taken. The inner product, with respect to which the
adjoint property is defined, was changed to include a convo-
lution over time. Also note that the orthogonality conditions
are imposed here to ensure the continued validity of lineari-
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zation in Eq. (5), and of the resulting simplification of the
collision operator. These conditions reduce to the compati-
bility conditions of the steady-state theory in the limit 3 /
Jt—0. However, while the imposition of these conditions in
the dynamic case results in considerable mathematical sim-
plification, it is not necessary here for the existence of solu-
tions.

IV. EXAMPLES

In this section, we give several examples showing how
Eq. (21) may be used to find interesting plasma responses.
For example, in addition to the current, the rf-induced
runaway rate may be computed. A second example shows
how contributions to the tf-induced plasma current (or for
that matter radiation, etc.) can be separated into runaway
and nonrunaway contributions. A third example shows how
analytic progress can be made, using Eq. (21), to find the rf-
induced conductivity in certain limiting cases.

To calculate how rf waves affect the runaway produc-
tion rate, we must first be precise in defining a runaway elec-
tron. If the parallel electric field always points in one direc-
tion (i.e., electrons are pushed unidirectionally), then
electrons can be accelerated by this field to high enough en-
ergy that they overcome the dynamic frictional force of colli-
sions. If the domain V is large, then an electron accelerated
from the bulk of the distribution to the boundary = may be
deemed a runaway, for frictional forces are extremely un-
likely to return this electron to the domain V. Itis convenient
to separate the boundary X into two parts; an electron ap-
pearing on X, leaves the domain ¥, while an electron ap-
pearingon =, isforced into the domain ¥, and X is the union
of 2, and 3, . For large V, it is primarily the electric field
that determines this dichotomy. A more precise separation
of 3 takes into account the small, but finite, inwardly (i.e.,
into V) pointing collisional force in addition to the force of
the electric field, so that 3, is slightly smaller than =, . All
runaway electrons appear at some time on 2, and all elec-
trons that appear on X_,, are runaways, freely accelerating
out of the domain V.

Equivalently, we can imagine solving a problem in
which collisions operate within the domain ¥, but the colli-
sion operator vanishes outside this domain, allowing elec-
trons to stream freely. Where the collision operator vanishes,
the governing equation reverts from parabolic to hyperbolic.
It is then correct to impose a boundary condition on just =, ,
rather than on the full boundary 3. The adjoint equation, on
the other hand, is well-posed when a boundary condition is
imposed only on 2 ,.

Define a flux S, (@) = ¢ f,,F + S.(#). Then, on Z;,, we
specify S,(¢), the incoming flux into domain V. For the
runaway problem, and most other problems of interest, this
flux is zero. For the adjoint equation, we require that
S.(¥)=0o0n 3, .On =, the opposite holds. Here we spe-
cify S.(¢) = 0, indicating that runaway electrons eventually
stream freely. We are then left with the freedom to choose
S, () in order to pose the adjoint equation.

Recognizing the vanishing of S on 3, and the vanishing
of S, on X, we can manipulate Eq. (21) into the more
useful form
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f 4% £ (DY (V)
| 4

+J dr| &(,m)Sz(vt—7)+da
0 Z

out

! ad
= J;d%J; drT, (vt —7)* pe ¥(v,7)

13

+f drf Yt -7, (v,7) da. (23)

(o] P

The above formulation also allows a slight refinement. The
collisional slowing down may be distinguished from the
collisional induced diffusion. Requiring that only the colli-
sional diffusion vanish at the boundary gives a more accurate
calculation of both the total flux at the boundary and the
demarcation between X, and X . For example, for the
runaway problem, the flux at the boundary may be expressed
as the sum i, eE, /m — v,v, where v,v represents the dyna-
mical friction resulting from collisions. The boundary £, is
then defined to exist where this sum points outward from the
domain V.

Let us now find the response function for the rf-induced
runaway rate. The number of rf-induced runaway electrons,
Ny, appearing on 2, between time 7 = 0 and time 7 =¢
may be written as

Ny =fd7'j S-da,
0 >

where S = (?’H eE /m — v V)¢ f, on Z,, is the more exact
posing of the problem. The less exact posing takes v,—0. In
either event, the response function satisfies Eq. (16),
D,y = Q,, where Q, is chosen to ensure orthogonality, with
initial condition

(24)

¥(0) =0, (25a)
and boundary conditions

Sp =/, (jyeEy/m —v,v) on Zo (25b)

S; =0, on X . (25¢)

Solving Eqs. (24) and (25) for ¢, and using Eq. (23), we obtain
(neglecting non-rf-induced contributions)

NR=fd3vftdrP(v,t—T)-%}a-%Il. (26)

Note that ¥{v,z ) may be interpreted here as the probabil-
ity with which a particle appears on =, by time ¢ given
initial coordinate v. For finite temperatures, eventually all
particles would run away, since even those that slow down
into the bulk distribution will ultimately scatter out of the
bulk and run away. It is convenient, however, to label such
electrons as stopped electrons, since they would run away on
amuch longer time scale. Suppose that the collision frequen-
cy were made artificially large as v—0 (or particles appearing
near v—0 were frozen and not allowed to run away). Then
particles running away without passing through the bulk
would be termed runaways, and the others would be termed
stopped. The probability of a particle running away given
initial coordinate v may then be expressed as

R (v) = ¢(v,> ). (27)

For some runaway speed vy, collisional deceleration and dc
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field acceleration balance. For v<€vg, R—0; for vy < — vg,
R = 1; and for vy;— o0, R—1. This runaway rate has been
obtained previously through an equivalent formulation of
the problem using Langevin equations.” The numerical
evaluation of the runaway rate was carried out by a Monte
Carlo method. Solving Eqs. (24) and (25) directly, however,
would be much easier.

It is often helpful to distinguish the contributions of dis-
tinct groups of electrons to a given effect. For example, both
runaway and stopped electrons contribute to the current. By
identifying the separate contributions, one can determine if
there is anything to be gained by somehow increasing or
decreasing the number of runaways, possibly by controlling
their confinement time. In Ref. 15, distinguishing these con-
tributions facilitated a comparison between theory and ex-
periment.

In order to deduce the contribution to an effect, say the
current, resulting solely from stopped electrons, we make
use of the function R (v) defined in Eq. (27). We write the
parallel current as J=J; + J5, where Jj is the runaway
current and J; is the current resulting from stopped elec-
trons. We can write J as

Js= f & fy dvi)og (1 —RW] +¢; +ec}, (28

where ¢, and ¢, are constants to be determined. Evidently,
the appropriate Green’s function ¥, for Jg solves Eq. (16)
with homogeneous boundary conditions and initial condi-
tion

Yt =0=v, [1 —R(¥)] +¢, +ec,, (29)

with ¢, and ¢, determined by the orthogonality properties of
¥,. Using Eq. (21}, we then have Js = — [¢5,(d/dv) - T'].

The last example in this section illustrates the ease with
which analytic solutions can sometimes be found for the re-
sponse functions. Analytic expressions are often available
when the collision operator can be written in the large-veloc-
ity limit. For example, the incremental conductivity caused
by the heating of superthermal electrons by rf waves can be
calculated analytically. This is the so-called “hot conductiv-
ity.” The simplification of the collision operator in the large-
velocity limit is valid, because only the superthermal elec-
tron contribution to the current is important. In contrast,
the Spitzer—-Hérm conductivity is not available analytically.
Both slow and fast electrons contribute importantly to the
Spitzer-Hirm current and a drastic simplification of the col-
lision operator is not possible.

In the high-velocity limit, the collision operator simpli-
fies to

C(¢)= VOfm [_u
1+Z\ 2 d
+( t2) 20— 2-]. (30)
2 du
where v, =w} In A/27nv}. is a collision frequency, u
=v/vr, 4 _v"/v,vT (T /m)"/2, and Z is the ion charge

state. In order to find the hot conductivity, we need to solve
Eq. (16) in the limit F = 1, eE,/m—0. Also, since we wish
to find the steady-state conductivity rather than the tran-
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sient effects, it is necessary only to calculate the time integral
of ¢ rather than 4/ itself.
Accordingly, define

x(v) =f dty(v,7),
0

where ¢(v,7) solves Eq. (16) with homogeneous boundary
conditions and initial condition ¥ (v,r = 0) = ev uu. Inte-
grate Eq. (16) from 7= 0to 7= o to obtain

—fu (Fr ) = €l = Frmewrus, (32

where we noted that #{v,7) — 0 as 7—0 (for finite conductiv-
ity), and that the constants ¢, and ¢, in Eq. (16) are, in this
case, zero. Expanding y in a power series in E, ie.,
X=Xo+E x,+ ---,allowsustosolve Eq. (32) analytical-
ly. Using F = eE, /m in Eq. (32), we obtain

Yo = [2/(5 4 Z,)](e/mvrve) pu' + O (%),

1 (e \* 4uf -1
= 1 +0 4)
X1 3v0(mvT) 5+Z,-( + 3+Z) )

(33b)

(31)

(33a)

and the current is found from

J=f d>»T-
vV

d
3V(X°+E"X1+ )y (33¢)

where the first term gives the current in the absence of an
electric field and the second term gives the current that is
bilinear in both the dc electric field on the rf power absorbed.

We can express quantities of interest more conveniently
by noting that the absorbed power is given by

_ 3, ., 9€
Pd_J.Vd v T 3 (34}
Expanding J=J,+ 0\E) +0,E} + ---
to Egs. (33), we can write
Jo _ v d3 T (dyo/av) (35
P, Syd>I-(3e/dv) '

and

and comparing

3 .
al:Pded v (8X1/6v)' (36)
Sy (Fe/dv)

In Eq. (35), we have exactly the Fisch-Boozer current-drive
efficiency.” In Eq. (36), we have exactly the “hot” conduc-
tivity, found previously® in a more circuitous fashion. Cor-
rection terms to both quantities are available by considering
higher-order terms in 1/u in Egs. (33).

V. MODIFIED C-E EXPANSION

The Chapman and Enskog expansion cannot address
the phenomena calculated here, although it is useful for de-
scribing bulk transport. The question is how we can modify
this expansion in order to incorporate effects associated with
the fast, collisionless electrons [especially those effects that
can be described by Eq. (18} and its associated formalism] in
addition to the bulk transport. We seek an expansion that
would reduce to the C-E expansion in the limit >0, and
would, for finite I, describe adequately the dynamics of the
fast electrons. In this expansion, the heating of the bulk elec-
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trons by the fast electrons, as well as other effects that link
the two distributions, should play a role in the evolution of
the C-E variables (n,T,c) for I' #0. (Here we use ¢ to describe
the drift of a Maxwellian distribution, with the understand-
ing that all these variables, n, T, ¢, must be specified sepa-
rately for each species.) In this section, we describe an expan-
sion that meets these criteria. We remark, however, that this
expansion, like the C-E expansion itself, is not a unique
choice, although it does possess some desirable features.

We begin with Egs. (1) and (2), and expand f using the
formal expansion parameters 6 and § (assumed small but
eventually set equal to one), i.e., we expand

f=f+X0fi+3 6", jk>1, (37)

where the f; represent corrections primarily to the bulk elec-
tron distribution and the A, represent the wave-driven cor-
rections. Accordingly, the collisions among the f; are as-
sumed to take place on a much shorter time scale than
collisions either between the f; and the 4, or among the 4.
We shall order

C(fpfi)~1/6, jk>0, (38a)
C(fiyhe)~1, Jj>0,k>1, (38b)
Clhy, b )~1, jk>1. (38¢)

The 1/8 Eq. (38a) ordering is inherited from the C-E ap-
proach, whereas the other ordering, as we shall see, allows us
to describe better the dynamics of fast electrons.

In the C-E approach, the use of multiple time scales
serves as a means of convenient bookkeeping. Here, in addi-
tion to the C~E time scales, we introduce a parallel scaling in
8, i.e.,

9_9 49 g2 9
at 9r, ar, ar,
a

8 &2 ces, 39

-+ 6,+ 8t2+ (39)

which facilitates the formal expansion. We assume the func-
tional dependencies

ﬂ) =.ﬂ)(TO’T1!T2)"'9t1,t21~-~9v7r) ’ (403)
.f} "_“fj (TOvafz"--’v’r) ’ j>1 b (40b)
hj = hj(To,tl,tz,...,V,l‘) y j>1 . (400)

Consider terms in the expansion of order 6 ¥, which rep-
resent the C-E terms. To order 1/6, we have

C(fofo) =0 (41)
which has the drifting Maxwellian solution
Jo=rn(n,Te), (42)

with n, T, and ¢ functions of time and space. To higher order
in 6, we have

0% C(fy="9%r, (432)
dr,
1 d a
6 Clh)=—f+—-—Ffo—~Clfif), (43b)
drg ar,
178 Phys. Fluids, Vol. 29, No. 1, January 1986

—_—=—ave—+Fe—. (44)

Equations (43) represent the first terms of the C-E expan-
sion. The f;, j>1 are chosen to contain no particles, current,
or energy. Compatibility is ensured, order by order, by using

%_z_a_n_afm_‘__alafm_'_ac afm
dr; OJr; dn dr; dT  dr; ¢9c

J
and solving for dn/dr;, dT /d7;, de/d7; to meet the require-
ments on the f;. The C-E quantities », T, ¢ then evolve
according to, e.g.,

29’
j=

In the absence of contnbutlons arnsmg from d /dt;, the terms
Jfo f1s f> are identical to the first three terms of the classic
C-E expansion.

Matching terms of order 8/ allows us to describe addi-
tionally the effects of the wave-driven fluxes. For example,
the first two equations in the expansion are

, (45)

(46)

+§‘_6’

j=1

d a
Lhy=—h,—Clh —_—fy— —T, 47
1 dry 1 (h) = alfo 3y (47a)
a
Lhy= — —h,— ——f(‘,+C(h1, hy) . (47b)
ot ar,

Note that Eq. (47a) is identical to Eq. (8) for £, except that
Jo is slightly more general here, that &, can be spatially de-
pendent, and that the inhomogeneous driving term associat-
ed with the Spitzer-Héarm current has been accounted for in
the C-E part of the expansion. The last difference means
that, consistent with our assumption of the low mean-free-
path limit, we ignore any runaway electrons except those
created by the waves. Those electrons could have been de-
scribed had we ordered the term F - df,/dv~&; however,
that would take us further than we wish away from the C-E
approach.

The differences between Eq. (47a) and Eq. (8) do not
affect the transferability of the technique to solve these equa-
tions. Boundary and initial conditions are imposed similarly.
The adjoint method used to solve Eq. (8) may be employed
both in Egs. (47a) and (47b) and higher-order equations in
the § expansion. The effect of the wave-driven fluxes on the
bulk transport properties is then accounted for through the
evolution equations for n,T, and ¢, as in Eq. (46).

While the above procedure accurately treats to first or-
der both the wave-driven fluxes and the bulk transport with-
in the spirit of Chapman and Enskog, a question arises as to
higher-order terms in the expansion that are hybrid, i.e., bi-
linearin ; and f; . There s a certain amount of arbitrariness
in treating these hybrid terms; their main effect would be to
correct somewhat the properties of the bulk plasma, rather
than to change the dynamics of the fast electrons. Accord-
ingly, it is most expedient to account for these terms by al-
lowing them to drive the f,. To incorporate them, we as-
sume & ~ 6. So, for example, the lowest-order hybrid terms,
which are bilinear in f] and A, [which are computable from
Eqgs. (43a) and (43b)], drive the third-order C-E term f,,
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ie.,

Cr=L2f+ 2 i+l fClhufi) = Cfuf)
dr, ar, or,

— C(fishy) — C(hy, f1) - (48)

In such a manner, we may solve order by order both for

J; and h;, evolving n, T, ¢ [e.g., through Eq. (46)] as we do

s0. Finally, we set the formal expansion parameters 8,6 = 1.

In practice, however, one may contemplate that only the
first few terms of such an expansion are important.

Vi. SUMMARY AND CONCLUSIONS

This paper concerns itself with the description of effects
associated with fast, relatively collisionless electrons, which
have a mean free path that may be long compared to other
lengths of interest. It is possible that these few, fast electrons
will contribute importantly to plasma transport, particularly
in the case of an intensely rf-driven plasma. Intense rf waves
interacting primarily with fast electrons produce particle
fluxes in velocity space that can substantially alter the distri-
bution of electrons. The result may be a large change in the
plasma current, synchrotron radiation, bremsstrahlung,
runaway production, or other quantities associated with the
transport of fast electrons.

In order to calculate the plasma response to wave-in-

duced fluxes in velocity space, we linearized the inhomogen-

eous dynamic Boltzmann equation. Although the linearized
equation is not much more easily solved numerically than is
the original equation, it is possible, because of the lineariza-
tion, to find the Green’s functions for quantities of interest.
In Sec. III we identified an adjoint operator, defined over a
suitable inner product, that allowed us to generate adjoint
equations for calculating these quantities. By imposing ini-
tial and boundary conditions on the adjoint equation, plas-
ma responses may be calculated, via Eq. (23), for arbitrary
wave-induced fluxes I'.

An important simplification in the practical application
of Eq. (23) arises from our ability to infer information about
I’ from the resonance condition, as discussed in Sec. IL. This
allows us to compare, for example, likely plasma responses
per power dissipated as the phasing of the waves is varied.

We gave several examples in the use of these response
functions in Sec. IV. These examples showed how useful ad-
joint equations may be defined, and how, in certain limits,
analytic solutions are available. .

The responses associated with these fast electrons are
not fluid effects, and are not naturally found in small mean-
free-path expansions of the Boltzmann equation, such as the
expansion of Chapman and Enskog. In Sec. V, however, we
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showed how the C-E expansion may be modified to account
for the wave-driven fluxes. An expansion, formally in two
small parameters, was proposed: the frequently colliding
bulk particles are treated as fluid-like, exactly as in the C-E
expansion, while the fast, long-mean-free-path electrons
evolve subject to external forces and subject to collisions pre-
dominantly with bulk electrons and ions. The description of
the fast electrons is facilitated by the use of adjoint equations,
and the effect of these electrons on the bulk transport pro-
cesses appears in the higher-order terms describing the bulk
particles.

Although the response functions derived here can be
directly implemented in existing transport codes (see, e.g.,
Ref. 21} that simulate completely the evolving plasma, we
speculate that a more advantageous use of this work is
through the development of a set of correlations from which
plasma behavior might be inferred. ’
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